Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities
نویسندگان
چکیده
We study discontinuous Galerkin methods for solving elliptic variational inequalities, of both the first and second kinds. Analysis of numerous discontinuous Galerkin schemes for elliptic boundary value problems is extended to the variational inequalities. We establish a priori error estimates for the discontinuous Galerkin methods, which reach optimal order for linear elements. Results from some numerical examples are reported.
منابع مشابه
Discontinuous Galerkin Methods for an Elliptic Variational Inequality of 4th-Order
Discontinuous Galerkin (DG) methods are studied for solving an elliptic variational inequality of 4th-order. Numerous discontinuous Galerkin schemes for the Kirchhoff plate bending problem are extended to the variational inequality. Numerical results are presented to illustrate convergence orders of the different methods.
متن کاملA Posteriori Error Estimates for Discontinuous Galerkin Methods of Obstacle Problems
We present a posteriori error analysis of discontinuous Galerkin methods for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. We derive reliable error estimators of the residual type. Efficiency of the estimators is theoretically explored and numerically confirmed.
متن کاملDiscontinuous Galerkin Multiscale Methods for Elliptic Problems
Discontinuous Galerkin Multiscale Methods for Elliptic Problems Daniel Elfverson In this paper a continuous Galerkin multiscale method (CGMM) and a discontinuous Galerkin multiscale method (DGMM) are proposed, both based on the variational multiscale method for solving partial differential equations numerically. The solution is decoupled into a coarse and a fine scale contribution, where the fi...
متن کاملSuperconvergence Properties of Discontinuous Galerkin Methods for Two-point Boundary Value Problems
Three discontinuous Galerkin methods (SIPG, NIPG, DG) are considered for solving a one-dimensional elliptic problem. Superconvergence for the error at the interior node points and the derivative of the error at Gauss points are considered. All theorectical results obtained in the paper are supported by the results of numerical experiments.
متن کاملInterior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient
This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bilinear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2010